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Abstract—Human pose estimation has been used to perform 
human motion analysis in widespread applications. Three-
dimensional (3D) human pose estimation from single image has 
attracted much attention because of its ease of measurement. 
Methods of this approach have become more accurate with the 
introduction of deep neural networks. Most of these methods are 
trained to estimate the body joints of the whole human body. 
However, when a part of the body joints is obscured by the 
presence of other objects or the camera position and angle, the 
estimation accuracy of the overall body joints may be degraded. 
In this study, we attempt to experimentally construct a 3D 
human pose estimation model for partial body joints to 
accurately estimate the pose of a partially human body that can 
be visibly measured. To evaluate the performance of the 
proposed model, we construct a neural network model that 
estimates only the 3D position of the visible upper body joints, 
assuming that only those joints are visible. Our evaluations 
showed that the partial body joint model was more accurate in 
estimating the posture from frontal human images. However, 
there was no significant difference in the accuracy between our 
model and previous pose estimation model when the posture was 
estimated from images of people taken from extreme angles. 
Finally, we attempt to extend our model to a system for detecting 
deterioration in sitting postures to verify the effectiveness of the 
model. 

Keywords-3D human pose estimation; partial body joint; RGB-D 
camera; computer vision; sitting posture. 

I.  INTRODUCTION 
Human pose estimation is a task that uses computer vision 

technology to estimate the location of body joints of a human 
body from a given image. Over the past five years, research in 
human pose estimation has shifted from 2D to 3D. 3D human 
pose estimation has attracted a significant interest from the 
scientific community. The technique has made significant 
progress by introducing methods based on deep learning. 
However, it still has some problems, such as depth 
ambiguities and lack of in-the-wild datasets. This study 
extends our previous work on the influence of occlusion on 
3D human pose estimation [1].  

3D human pose estimation has been applied in a wide range 
of fields including human-computer interaction, games, sports 
performance analyses, and other motion analyses [2][3]. Liu 
et al. (2013) extracted skeletal information of seven basic 
human actions using Microsoft Kinect v1 and classified them 
using k-means clustering and Hidden Markov Models 
(HMMs) [4]. Ono et al. (2021) used Microsoft Azure Kinect 

[5] to measure the hand movements of pharmacists to monitor 
drug picking operations in pharmacies [6]. Their method uses 
finger landmark detection with MediaPipe [7] for more 
accurate detection of the picking tasks. 3D human pose 
estimation has also been used for a motion analysis to evaluate 
the effectiveness of rehabilitation. Prima et al. (2019) 
demonstrated the usability of 3D human pose estimation using 
a vision camera for measuring the range of motion of joints to 
promote self-rehabilitation by patients [8]. Their experiments 
show that the resulting 3D human pose estimated from a single 
image is more advantageous for estimating semi-occluded 
body joint locations than those estimated by a depth sensor. 

3D human pose estimation methods can be broadly 
classified into two categories: a method using multiple 
cameras and a method using a single camera. Methods using 
multiple cameras are advantageous for depth measurement 
and occlusion avoidance. Ziegler et al. (2006) proposed a 
method to track an articulated upper body using four stereo 
cameras [9]. A point cloud of the synthesized body model was 
fitted to the measured 3D data using an iterative closest point 
(ICP) registration algorithm. Nakano et al. (2020) estimated 
the 2D human pose from images by OpenPose library [10] and 
estimated the 3D human pose based on triangulation of these 
2D body joints [11]. However, these methods suffered from 
the difficulty of camera calibration. In contrast, 3D human 
pose estimation from a single camera is based on an estimation 

 
Figure 1.  Body joints used in this study. 9 joints were used for the 

upper-body model, and 17 joints for the whole-body model. 
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method that uses 3D human pose datasets. Chen and Ramanan 
(2017) proposed a method to generate 3D human poses using 
a 3D human pose library consisting of pairs of 2D and 3D 
human poses [12]. Their results suggest that such a simple 
baseline should be used as a benchmark for future work in 3D 
human pose estimation. Martinez et al. (2017) constructed a 
relatively simple deep neural network that converts 2D human 
pose data to 3D human pose data [13]. Moon et al. (2019) used 
the correlation between 2D and 3D human poses to estimate 
the position and posture of the human body in real 
environment [14]. However, since the 3D human pose 
estimation from a single camera assumes that the whole-body 
joints are completely visible in the input image, if any part of 
the body joints is hidden, the estimation accuracy for the 
whole-body joints may be degraded.  

Methods for 3D human pose estimation considering 
occlusion have been proposed. Vosoughi et al. (2018) 
proposed a deep Convolutional Neural Network (CNN) that 
regresses 3D human pose from an RGB image and a CNN that 
detects the presence of human body joints from an RGB image 
[15]. Sárándi et al. (2018) evaluated the robustness for 
occlusion in 3D human pose estimation using Human3.6M 
dataset [16] with synthetic occlusions [17]. However, these 
methods have been evaluated using only existing datasets, and 
have not been tested for the accuracy of 3D human pose 
estimation in the case where occlusion is caused in real world. 
In addition, these methods have not been tested for the case 
where self-occlusion occurs.  

This study attempts to experimentally construct a partial 3D 
human pose estimation model to accurately estimate only the 
visible body joints of the human body even if some joints of 
the human body are hidden by other objects or self-occlusion. 
To verify the effectiveness of the model, we constructed a 
model that estimates only the body joints of the upper body 
and verified the estimation accuracy of the model using a 
modified Human3.6M dataset and two datasets originally 
created using RGB-D cameras. In addition, we developed a 
system for detecting deterioration in sitting posture using the 
model and verify the usability of the system. 

This paper is organized as follows. Section II describes the 
methodology of constructing the 3D human pose estimation 
model for partial body joints and three human pose datasets to 
verify the estimation accuracy of the model. In Section III, we 
present our evaluation results evaluated using these datasets. 
Section IV describes how to construct a posture deterioration 
detection system using the model and verify the usability of 
the system. Finally, Section V summarizes the results of this 
study. 

II. METHODOLOGY 
In this study, we attempt to experimentally construct a 

partial 3D human pose estimation model to accurately 
estimate only visible body joints of the human body, even if 
some of them are hidden. Our model is constructed by 
improving the existing 3D human posture estimation model 
[13]. Figure 1 shows the nine upper body joints of the human 
body to be estimated by the partial 3D human pose estimation 
model in this study.  

To evaluate the performance of our model, we compare its 
estimation accuracy with that of a whole-body joints model 

 
Figure 3.  Calculation of Head and Neck points (red dots) using  

OpenPose face landmarks (black dots) in the sitting posture  
datasets. 
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Figure 2. 2D and 3D human pose estimation using an Intel RealSense D435 to build the sitting posture dataset in this study. 
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[13] using three different 3D human pose datasets. For 
convenience, the model of the body joints of the whole body 
is referred to as the “whole-body model” and the model of 
only the body joints of the upper body as the “upper-body 
model”. The evaluation involves the following procedures. 
First, we simulate a scene in which only the upper body is 
visible using the Human3.6M dataset to evaluate the 
estimation accuracy of each model. Second, in order to 
evaluate the estimation accuracy of the 3D human pose of the 
upper body in the real world, two 3D human pose datasets, 
such as sitting postures and high-angle captured standing 
postures are constructed independently using RGB-D cameras. 

A. Building a Partial 3D Human Pose Estimation Model 
To train the upper-body model, we use the Human3.6M 

dataset. The dataset consists of 3.6 million 3D human poses 
and their corresponding images measured by 11 professional 
actors (5 females and 6 males) in 17 different daily activities.  
We adopted the method of Martinez et al. [13] to build the 
upper-body model. This method uses a relatively simple deep 
feed-forward neural network to efficiently estimate the 3D 
human pose of the whole body. Following Martinez et al., the 
model is trained from the measurement data of subjects 1, 5, 
6, 7 and 8, and validated from the measurement data of 
subjects 9 and 11. The neural network receives the 2D human 
pose as input, and the input data is extended to 1024 
dimensions by the fully connected layers. The weights of all 
the layers are initialized using the method of He et al. (2015) 
[18]. After that, the network performs batch normalization, 
Rectified Linear Unit (ReLU), dropout rate of 0.5, and a 

residual connection. The model is trained for 200 epochs with 
a learning rate of 0.001 and a batch size of 64. 

B. Building Human Pose Datasets Using RGB-D cameras  
We create two 3D human pose datasets, as ground truth 

data, using RGB-D cameras in real-world situations where 
only the upper body is visible due to the presence of other 
objects or due to the extreme capture angle and evaluate the 
performance of models using these datasets. RGB images and 
depth data of the participants in their postures are recorded. 

1. Sitting Posture Dataset 
An Intel RealSense D435 [19] was used to measure the 

sitting posture. The resolution of the RGB-D camera is 
640×480px and the number of Frame Per Second (FPS) is 30. 
Figure 2 shows the procedure for generating human pose data 
in the sitting posture dataset. Participants were asked to sit 1m 
from the device and move their hands and bodies.  

The procedure for generating 3D human pose data in a 
sitting posture is shown as follows. First, using the Intel 
RealSense D435 SDK, we calculated the depth value 
corresponding to each pixel of the measured RGB image. 
Then OpenPose library was used to estimate the 2D body 
joints from RGB images as shown in Figure 2. We also 
calculated head and neck points using OpenPose facial 
landmarks. Figure 3 shows calculations of these points. First, 
we calculated the 2D vector from nose to the midpoint of both 
eyes. Then the head point was obtained by extending this 
vector upward by three times its length. Similarly, the neck 
point was obtained by extending this vector downward by 

 
Figure 4. 2D and 3D human pose estimations using a Microsoft Azure Kinect to build the high-angle captured standing posture dataset in this study. 
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twice its length. The corresponding 3D body joints might not 
be measured accurately due to missing depth values. In such 
a case, the Hampel filter [20] was applied to the time-series 
values to interpolate the concerned joints by computing the 
Median Absolute Deviation (MAD) over a specified range of 
analysis targets. For this study, the window size was set to 30. 
These 3D body joints are treated as ground truth data. 

2. High-Angle Captured Standing Posture Dataset 
To evaluate the estimation accuracy of the upper body 

model when the human body is measured from extreme angles, 
the motion of a worker picking drugs was captured from the 
ceiling. A Microsoft Azure Kinect was used to capture the 
motion of a worker. 2D body joints are estimated by 
OpenPose library from RGB images. In the standing posture 
dataset, the head point was obtained as the midpoint of both 
ears. The neck point was the midpoint of nose and neck 
estimated by OpenPose library. 3D body joints were measured 

using the Software Development Kit (SDK) of the Azure 
Kinect Body Tracking. The head point was derived from the 
midpoint of both ears and the neck point was derived from the 
midpoint of the nose and neck measured by the Azure Kinect 
SDK. 

Figure 4 shows the procedure for generating human pose 
data in the standing posture dataset. Two dispensing cabinets 
were used to simulate the drug-picking environment. These 
cabinets can hold 63 shelves (7 rows by 9 columns). These 
cabinets were placed side-by-side at a height of 85.5 cm from 
the floor, and the Microsoft Azure Kinect was placed 92 cm 
above the dispensing cabinet. The resolution of the color 
camera is 1920×1080px and the angle of view is 90°×59°. 
The depth sensor has a resolution of 512×512px and the angle 
of view is 120°×120°. 

The procedure for generating the dataset of the standing 
human posture is as follows. First, the subject stands in front 
of two dispensing cabinets and manipulates the shelves 

 
Figure 5. The process of evaluating the estimation accuracy of the upper-body model and the whole-body model in this study. 
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TABLE I.  THE ESTIMATION ACCURACY OF THE UPPER-BODY MODEL AND THE WHOLE-BODY MODEL FOR THREE HUMAN POSE DATASETS. 

No. Joints 
Human3.6M [cm] Sitting Posture [cm] High-Angle Captured 

Standing Posture [cm] 

Whole-Body Upper-Body Whole-Body Upper-Body Whole-Body Upper-Body 

1 Thorax 16.3 5.0 11.4 7.5 8.8 9.6 

2 Neck 3.8 2.7 18.2 14.5 16.3 11.2 

3 Head 8.1 4.6 9.7 12.2 19.6 12.4 

4 Left Shoulder 8.1 3.7 10.4 9.1 6.9 10.5 

5 Left Elbow 9.1 4.5 10.3 9.2 14.2 11.8 

6 Left Wrist 10.9 7.0 14.9 10.8 14.2 14.1 

7 Right Shoulder 7.3 3.5 10.8 11.3 4.7 8.1 

8 Right Elbow 9.0 4.7 10.3 10.9 12.3 11.0 

9 Right Wrist 10.6 7.0 15.8 11.1 17.7 19.0 

Mean (M) 9.24 4.74 12.42 10.73 12.74 11.97 

Standard Deviation (SD) 3.363 1.464 3.064 2.009 5.038 3.132 
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indicated by the experimenter. This operation is a series of 
movements from pulling out the target shelf to putting it back. 
The subject should operate the shelves on the left side with the 
left hand and the shelves on the right side with the right hand. 
After this series of operations, the subject returns to the initial 
standing position. The subject repeats the above procedure 
until all the shelves have been manipulated. 

C. Evaluation 
Using the Human3.6M, the sitting posture dataset, and the 

standing posture dataset, we evaluate the estimation accuracy 
of the upper-body model against the whole-body model. 
Figure 5 shows the process of evaluating the estimation 
accuracy of these models in this study. 3D human pose of the 
upper body is estimated using the 2D body joints from each 
dataset. For the upper-body model, all these body joints of the 
upper body were used, but for the whole-body model, the 
coordinates of the body joints corresponding to the lower body 
were set to (0,0). Finally, the error between the 3D human 
pose estimated by each model and the corresponding ground 
truth was calculated. 

In this study, Procrustes Analysis, a shape-preserving 
Euclidean transform, is used to evaluate the differences in the 
pose data. This analysis eliminates the variation in movement, 
rotation, and scaling between the pose data while preserving 
the shape. 

III. RESULT 
We evaluated the difference in estimation accuracy 

between the whole-body model and the upper-body model 
using the 3D human pose datasets.  For this evaluation, we 
randomly selected 548,800 human poses from the 
Human3.6M datasets, which were not used for training and 
validation of these models. For the sitting posture datasets, we 
generated 7,350 3D human pose from a subject using the Intel 
RealSense D435. For the standing posture dataset, we 
randomly selected 10,000 3D human pose from five subject's 
picking movement data. 

Table 1 shows the estimation accuracy of the upper-body 
model and the whole-body model for the Human3.6M dataset, 
the sitting posture dataset, and the standing posture dataset. In 
the Human3.6M dataset, the error from the upper-body model 
was significantly smaller than that from the whole-body 
model (M = 9.24, SD = 3.363, t(8) = 4.91, p < 0.001), resulting 
in an improvement of about 4.5cm in estimation accuracy. 
Likewise, for the sitting posture dataset, the upper-body model 
improved the estimation accuracy by about 2 cm compared to 
the whole-body model (M = 12.4, SD = 3.064, t(8) = 1.98, p < 
0.05). However, the error of the upper-body model was larger 
than that of the whole-body model at some body joints, such 
as head and right shoulder. The reason for this may be due to 
the accuracy of the constructed ground truth data. Finally, for 

  
Figure 6. Examples of a 3D human pose estimated by the upper-body model on the standing posture dataset. 
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the standing posture dataset, the upper-body model improved 
the estimation accuracy by 0.8cm compared to the whole-
body model, but the difference was not significant (M = 12.7, 
SD = 5.038, t(8) = 0.63, p > 0.05). 

Figure 6 shows examples of a 3D human pose estimated 
by the upper-body model on the standing posture dataset. The 
top row shows an example where the estimation error is small 
for all joints of the upper body. The average error for the body 
joints of the upper body is 7.6 cm. However, the error is 
particularly large for the wrist joint. This reason for this error 
may be that the upper-body model is not sufficiently trained 
to estimate the body joints of the human body measured by 
the high-angle camera. The bottom row shows an example 
where the estimation error is large for all joints of the upper 
body. In this example, because the body joints estimated by 
the upper-body model differed significantly from the ground 
truth, the errors are particularly large for the left elbow and the 
right wrist joints. The dotted box in the figure indicates the 
body joint with large estimation error in each example. 

IV. DETECTION OF DETERIORATION IN SITTING POSTURES 
Workers tend to unconsciously hunch over while seated at 

a desk or other workstation. Such a posture may cause 
physical health problems because it puts a burden on the 
shoulders and hips. Techniques using pressure sensors [21] 
[22] and IMU sensors [23] have been proposed to detect such 
an improper posture. However, these techniques require these 
sensors to be attached to a human body or a chair. 

In this study, we attempt to extend an upper-body model 
to a posture deterioration detection system to solve these 
problems. This system estimates the 3D human pose of a 
person using an upper-body model from RGB images 
measured by a web camera. The system then detects the 
deterioration of posture based on the body angle calculated 
from the estimated 3D human pose. In addition to the body 
joints of the upper body shown in Figure 1, the upper-body 
model estimates the Spine and the Pelvis. Our system detects 
deterioration in sitting posture without contact and encourages 
improvement in posture. 

 
Figure 7. The illustration of the posture deterioration detection system using the upper-body model. 
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A. Posture Deterioration Detection System 
Figure 7 shows a schematic diagram of the posture 

deterioration detection system using the upper-body model. 
First, we use a web camera to capture the frontal view of a 
worker at a desk. Next, the 2D body joints of the worker is 
estimated from the RGB images using the OpenPose library. 

Then, we estimate the 3D human pose of the upper-body from 
these body joints using the upper-body model. Finally, we 
detect the deterioration of the posture based on the calculation 
of the body angle calculated using the estimated 3D body 
joints. 

  
(a-1) IMU Measurement (a-2) The proposed system 

(a) Subject A 

  
(b-1) IMU Measurement (b-2) The proposed system 

(b) Subject B 

Figure 11. The changes in the body angle of two subjects measured by the proposed system and the IMU during raising movement. 
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Figure 10. The changes in the body angle of two subjects measured by the proposed system and the IMU during forward leaning movement. 
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Our system focuses on the changes in the body angles 
formed by neck, spine, and pelvis to detect the deterioration 
of the posture. In this system, the user decides the upper and 
lower limits of the body angle to be used for judging the 
deterioration of posture. When the body angle measured by 
the system exceeds the threshold value, the system detects the 
posture as a deteriorated posture. 

B. Evaluation of Posture Deterioration Detection System  
To evaluate the usability of the posture deterioration 

detection system, we evaluate the system from two 
perspectives: whether the system can measure the change in 
body angle appropriately and whether the system can properly 
detect a deteriorated posture based on the threshold value set 
from the measured change in body angle. 

For this evaluation, we assume that the system is used 
during desk work and detects posture deterioration in the 
sitting posture. We use a 57cm×43.5cm display and place it 
on a desk. The web camera is Buffalo BSW200MBK. This 
camera is placed at the center of the upper part of the display 
to measure the subject from the front. The angle of view of the 
camera is 120°×67°, the resolution is 640×480px, and the 
frame rate is set to 30FPS. 

To evaluate the angle of the subject's body, an Inertial 
Measurement Unit (IMU) is used as reference data. We use 
the Adafruit BNO05 (100Hz) IMU, which is attached to the 
back of the subject's neck. Figure 8 shows the placement of 
the web camera and the IMU. Five subjects participated in this 
evaluation. 

The procedure for evaluating the posture deterioration 
detection system is as follows. Figure 9 shows the two 

 
  

(a-1) The 2D pose (a-2) The predicted 3D pose (a-3) The body angle 

(a) Ideal Posture 

 
  

(b-1) The 2D pose (b-2) The predicted 3D pose (b-3) The body angle 

(b) Forward Leaning Movement 

 
  

(c-1) The 2D pose (c-2) The predicted 3D pose (c-3) The body angle 

(c) Raising Movement 

Figure 12. The working example of our system. 
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motions measured in this evaluation. First, the subject is 
seated 70cm from the web camera. At this point, the subject is 
instructed to put his hands on the desk, raise his head, and 
straighten his back. We refer to this posture as the ideal 
posture. Next, the subject takes 5 seconds from the ideal 
posture to tilt the upper body forward at a certain speed. After 
that, the subject returns to the ideal posture at a certain speed 
for 5 seconds. This series of motions is performed twice. In 
this evaluation, we refer to the movement from the ideal 
posture to the forward leaning posture as the forward leaning 
movement. In addition, we refer the movement from the 
forward leaning posture to the ideal posture as the rising 
movement. The body angle is measured by the web camera 
and the IMU. Finally, we calculate the correlation between the 
changes in the body angles measured by the web camera and 
the IMU.  

The correlation coefficients of the body angle changes 
measured by the web camera and the IMU were 0.933 on 
average. Figures 10 and 11 show the changes in the body angle 
measured by the web camera and the IMU during forward 
leaning and rising movements. Figure 12 shows the working 
example of our system. As shown in Figure 12(b), when the 
worker's head moves forward and the posture becomes 
hunched, the body angle changes significantly. The dotted line 
in the figure indicates an empirical threshold that indicates the 
acceptable range of an appropriate sitting posture. When the 
seating posture deteriorates, the measured angle does not fall 
within this range.  

V. CONCLUSION AND FUTURE WORK 
The purpose of this study is to accurately estimate the body 

joints of the human body that can be measured if a part of body 
joints is hidden due to the presence of other objects or the 
position and angle of the vision camera. For this purpose, we 
developed a partial 3D human pose estimation model that 
estimates the upper body joints, assuming that only the upper 
body is visible. We evaluated the performance of the model 
using three different 3D human pose datasets to examine the 
estimation accuracy of the model. And we also attempted to 
extend the model to a system for detecting deterioration in 
sitting posture. 

To verify the estimation accuracy of the model, we 
evaluated the estimation accuracy of the model against the 
whole-body model using three different 3D human pose 
datasets. At first, we conducted an evaluation using the 
Human3.6M dataset. Next, we constructed two datasets 
independently using RGB-D cameras and evaluated the 
estimation accuracy of both models to confirm the estimation 
results of 3D human pose with occlusion in the real world. The 
first dataset is a sitting posture dataset, which was constructed 
to evaluate the pose of the human body when occlusion by 
other objects occurs. The second dataset is a high-angle 
captured standing posture dataset. This dataset was 
constructed to evaluate the estimation accuracy of the pose of 
a human body measured by a camera from extreme angles. 
The results show that the proposed model can estimate the 3D 
human pose more accurately from frontal human images than 
the whole-body model. However, when the human body was 
measured from extreme angles, there was no significant 

difference in the estimation accuracy between the two models. 
The reason for this is that the model did not learn sufficiently 
about the pose of the 3D human body from extreme angles. 

We attempted to extend the partial 3D human pose 
estimation model to a posture deterioration detection system 
for sitting posture in order to promote the improvement of the 
sitting posture. In this system, the posture of the person is 
measured using a web camera, and the pose of the upper body 
is estimated by the model. The system then calculates the body 
angle to detect the deterioration of the posture. We confirmed 
that the system can measure changes in the body angle and is 
effective in detecting posture deterioration in a sitting posture. 
In addition, the system has the advantage of being able to 
detect posture deterioration without contact using only a 
widely used web camera. 

In the future, we will construct other partial body joint 
models, such as the left half of the body and the lower half of 
the body and verify the estimation accuracy for each model. 
In addition, we will study the improvement of the model to 
increase the accuracy of human pose estimation from extreme 
measurement angles. Furthermore, we will improve the 
reliability of posture deterioration detection to build a more 
practical posture deterioration detection system. 
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